# Synthesis of secasterone and further epimeric 2,3- epoxybrassinosteroids 

Brunhilde Voigt, ${ }^{a}$ Suguru Takatsuto, ${ }^{b}$ Takao Yokota ${ }^{c}$ and Günter Adam ${ }^{a}$<br>${ }^{a}$ Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle|S., Germany<br>${ }^{5}$ Department of Chemistry, Joetsu University of Education, Joetsu-shi, Niigata 943, Japan<br>' Department of Biosciences, Teikyo University, Utsunomiya 320, Japan


#### Abstract

As part of a programme directed towards the synthesis of new native brassinosteroids and biologically active analogues we synthesized ( $22 R, 23 R, 24 S$ )- $2 \alpha, 3 \alpha$-epoxy- 22,23 -dihydroxy- 24 -methyl- $5 \alpha$-cholestan- 6 -one and ( $22 R, 23 R, 24 S$ )- $2 \beta, 3 \beta$-epoxy-22,23-dihydroxy- 24 -methyl- $5 \alpha$-cholestan- 6 -one (secasterone) as well as both the corresponding 2,3 -epoxides of the $(24 R)$-series. In addition, the isomeric 3 -dehydro- 24 -epi-teasterone has been prepared. The bioactivity of the new compounds is discussed.


The brassinosteroids represent a new class of steroidal phytohormones with high growth promoting and anti-stress activity. Since the discovery of brassinolide in rape pollen more than 30 other brassinosteroids have been isolated and identified from a broad variety of plants. ${ }^{1.2}$ Recently, we found in seeds of Secale cereale (rye) the new brassinosteroid secasterone 16 $[(22 R, 23 R, 24 S)-2 \beta, 3 \beta$-epoxy-22,23-dihydroxy-24-methyl-5 $\alpha-$ cholestan-6-one] ${ }^{3}$ representing the first naturally occurring brassinosteroid with a 2,3 -epoxy function. Also the first 3,6diketo brassinosteroid (3-dehydroteasterone), a possible intermediate in the biosynthetic pathway of brassinosteroids between teasterone and typhasterol, ${ }^{4}$ was isolated from lily anthers and leaves of Distylium racemosum ${ }^{5}$ as well as from grains of Triticum aestivum L. (wheat). ${ }^{6}$ The GC-MS analysis of such endogenous brassinosteroids, present only in minute amounts in plant material, requires the availability of corresponding reference standards. In this paper we describe the synthesis of the four epimeric brassinosteroids with a 2,3epoxy function related to castasterone and 24-epi-castasterone, as well as the preparation of the isomeric 3-dehydro-24-epi-teasterone.

## Results and discussion

For the synthesis of both ( $24 R$ )-configurations of 2,3-epoxides 9 and 15 the $3 x, 5$-cyclo $\Delta^{22}-6$-ketone 1 was used as intermediate available from ergosterol via mesylation, solvolysis to isoergosterol followed by allylic oxidation to the $\Delta^{7}-6-\mathrm{ketone}$ and subsequent Birch reduction. ${ }^{7}$ The enantioselective modification of the osmium-catalysed dihydroxylation of (22E)-olefin 1 using potassium hexacyanoferrate(III) as the cooxidant and dihydroquinidine $p$-chlorobenzoate ( DHQN ) as the chiral ligand gave $73 \%$ of the desired diol 2 with the ( $22 R, 23 R$ )-configuration ${ }^{8}$ essential for the high bioactivity of brassinosteroids. Whereas direct isomerization of the unprotected diol 2 with pyridinium hydrochloride and lithium bromide in dimethylacetamide led to a ring A saturated 3-chloro derivative, the same reaction starting from the isopropylidenedioxy derivative 3 smoothly afforded the desired $\Delta^{2}$-6-keto acetonide 4 , which was deprotected with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ HCl to give the 22,23 -diol 5. Epoxidation of 5 with m chloroperbenzoic acid (MCPBA) afforded, via attack from the less hindered $\alpha$-side, stereoselectively $(22 R, 23 R, 24 R)-2 \alpha, 3 \alpha-$ epoxy-22,23-dihydroxy-24-methyl-5 $\alpha$-cholestan-6-one 9 .

For the synthesis of the ( $24 S$ )-configuration of $2 \alpha, 3 \alpha$-epoxy compound 10 the known ${ }^{9}$ diacetyl derivative 6 was used. Hydrolysis to the $(22 R, 23 R)$-diol 7 followed by epoxidation with MCPBA gave $\mathbf{1 0}$.

To prepare the $(24 R)-2 \beta, 3 \beta$-epoxide 15 the $\Delta^{2}$-6-keto acetonide 4 was transformed with $N$-bromosuccinimide (NBS) in dimethoxyethane into the bromohydrin 11. Acidic deprotection to $\mathbf{1 2}$ followed by hydrogen bromide elimination with sodium methoxide led to the desired 15.

In a similar manner as described for the preparation of $2 \beta, 3 \beta$ epoxy compound 15 the corresponding ( $24 S$ )-configuration of $\Delta^{2}$-6-keto acetonide $8^{10}$ was transformed, via the bromohydrin 13, deprotection to 14 and HBr elimination, to give the native brassinosteroid ${ }^{3}$ secasterone 16.

The spectral data of all new compounds are in agreement with the given structures (see Experimental section). In particular, the observed low field shifts $(\Delta \mathrm{ppm}+0.09)$ of the 19 -methyl singlet in comparison with that of 9 confirms the $\beta$ arrangement of the 2,3-epoxy function in compound 15 . The same shift was found for both ( $24 S$ )-epimers 10 and 16 , respectively.
For the synthesis of 3-dehydro-24-epi-teasterone 19 3,5-cyclo ketone 1 was directly dissolved in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give the $3 \beta$-hydroxy 6-ketone 17. ${ }^{11}$ Subsequent Jones oxidation led to the 3-dehydro derivative 18, which afforded upon asymmetric dihydroxylation the 3,6-diketo diol 19 .
To study the phytohormone activity of the new ring $A$ modified 24 -epi-castasterone analogues the rice lamina inclination bioassay according to the method of Arima et al. ${ }^{12}$ was used. The obtained results showed that the $2 \alpha, 3 \alpha$-epoxy compound 9 at a concentration of 0.01 ppm has a higher activity ( $88 \%$ ) than its $2 \beta, 3 \beta$-epimer $15(59 \%)$ related to $24-$ epi-castasterone as standard $(100 \%)$. Also the isomeric 3,6diketo compound 19 exhibits a higher activity ( $74 \%$ ) than $2 \beta, 3 \beta$-epoxide 15 . The question remains open as to whether these activities are due to an in vivo biotransformation in the plant material leading to active ring $A$ hydroxylated brassinosteroids ${ }^{13}$ such as 24-epi-typhasterol.

## Experimental

Mps were determined on a Boetius hot stage microscope and are corrected. IR spectra were recorded on a Bruker IFS 28 instrument in Nujol or KBr disks. Optical rotations were measured on a Zeiss-polarimeter Polamat A and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. UV Spectra were measured on an Uvikon 941 Kontron instrument. CD spectra were recorded with a Jasco J 710 spectrometer. Mass spectra (EI-MS, 70 eV ) were run on an AMD 402 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian UNITY 500 spectrometer at 499.84 MHz in $\mathrm{CDCl}_{3}$ with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. $J$ Values are given in Hz . Silica gel $60,0.04-0.063 \mathrm{~mm}$ (Merck) was used for flash





Scheme 1 Reagents: i, $\mathrm{OsO}_{4}, \quad \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \quad \mathrm{~K}_{2} \mathrm{CO}_{3}$, DHQD, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{Bu}^{t} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$; ii, $(\mathrm{MeO})_{2} \mathrm{CMe}_{2}, p \mathrm{TsOH}$; iii, pyridine$\mathrm{HCl}, \mathrm{LiBr}, \mathrm{MeCONMe} 2$; iv, $\mathrm{HCl}, \mathrm{MeOH} ; \mathrm{v}$, MCPBA; vi, NBS, DME; vii, MeONa ; viii, $5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$, THF; ix, $\mathrm{CrO}_{3}, \mathrm{Me}_{2} \mathrm{CO}$
chromatography. Configurations of ( $24 S$ ) compounds were measured as described in ref. 6.

## (22E,24R)-24-Methyl-3 $\alpha, 5$-cyclo-5 $\alpha$-cholest-22-en-6-one 1

The title compound was prepared from ergosterol in $40 \%$ yield following the procedure described in ref. $7, \mathrm{mp} 105-108^{\circ} \mathrm{C}$;
$[\alpha]_{\mathrm{D}}^{23}+5.1\left(c \quad 1.82, \mathrm{CHCl}_{3}\right) ; \mathrm{CD}\left(\mathrm{CHCl}_{3}\right) \Delta \varepsilon_{292}-2.7 ; \lambda_{\max }-$ (c $1.72, \mathrm{MeOH}) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{1}\right) 286(130)$.
(22R,23R,24R)-22,23-Dihydroxy-24-methyl-3 $\alpha, 5$-cyclo-5 $\alpha$ -cholestan-6-one 2
A mixture of olefin $1(0.400 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(2.17 \mathrm{~g}, 7$ mmol, 6 equiv.), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.930 \mathrm{~g}, 7 \mathrm{mmol}, 6$ equiv.), methanesulfonamide ( $0.233 \mathrm{~g}, 2 \mathrm{mmol}, 2$ equiv.), DHQN ( 0.117 $\mathrm{g}, 0.2 \mathrm{mmol}, 0.2$ equiv.) and $\mathrm{OsO}_{4}(25 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{Bu}{ }^{t} \mathrm{OH}$-water, $1: 1\left(40 \mathrm{~cm}^{3}\right)$ was stirred at room temp. for 5 days. Solid sodium sulfite ( 1.0 g ) was added, and the mixture was stirred at room temp. for 1 h . $\mathrm{Bu}^{\text {t }} \mathrm{OH}$ was removed under reduced pressure, and the residue was extracted with ethyl acetate ( $6 \times 50 \mathrm{~cm}^{3}$ ). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{SO}_{4}\left(0.3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3 \times 50 \mathrm{~cm}^{3}\right)$ to recover the ligand and then brine, dried and concentrated. The crude product was purified by flash chromatography on silica gel ( 80 g). Elution with hexane-ethyl acetate ( $3: 7, \mathrm{v} / \mathrm{v}$ ) afforded the title compound $2(0.314 \mathrm{~g}, 73 \%)$, mp $187-190^{\circ} \mathrm{C}$ (lit., ${ }^{8} 189-$ $\left.190^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{24}+24.1\left(c 1.02, \mathrm{CHCl}_{3}\right) ; \mathrm{CD}\left(\mathrm{CHCl}_{3}\right) \Delta \varepsilon_{300}$ -1.43 .

## ( $22 R, 23 R, 24 R$ )-22,23-Isopropylidenedioxy-24-methyl-3 $\alpha, 5$ -cyclo-5 $\alpha$-cholestan-6-one 3

Keto diol $2(215 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dry ethyl acetate $\left(50 \mathrm{~cm}^{3}\right)$ was stirred with 2,2-dimethoxypropane ( $1 \mathrm{~cm}^{3}$ ) and toluene- $p$ sulfonic acid ( 10 mg ) for 3 h at room temp. The solvent was removed under reduced pressure, the residue stirred with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}\left(5 \% ; 30 \mathrm{~cm}^{3}\right)$ for 10 min , extracted with ethyl acetate, worked up and than purified by silica gel chromatography. Elution with hexane ethyl acetate $(8: 2, \mathrm{v} / \mathrm{v})$ gave the title compound 3 ( $205 \mathrm{mg}, 87 \%$ ), mp 166-167 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}$ $+38.1\left(c 1.40, \mathrm{CHCl}_{3}\right)$ (Found: C, 78.9; H, 10.5. $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}$ requires C, $79.10 ; \mathrm{H}, 10.71 \%$ ); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{1} 1680(\mathrm{CO}) ; \lambda_{\text {max }}(\mathrm{c}$ $1.22, \mathrm{MeOH}) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 290$ (44); CD $\left(\mathrm{CHCl}_{3}\right)$ $\Delta \varepsilon_{292}-2.88 ; \delta_{\mathrm{H}} 0.71\left(3 \mathrm{H}, \mathrm{d}, J 7.0,28-\mathrm{H}_{3}\right), 0.72\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $0.82\left(3 \mathrm{H}, \mathrm{d}, J 7.0,27-\mathrm{H}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J 7.0,26-\mathrm{H}_{3}\right), 0.99(3 \mathrm{H}$, d, $\left.J 6.1,21-\mathrm{H}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.35$ and $1.39(3 \mathrm{H}, \mathrm{s}$, isopropyl- $\left.\mathrm{CH}_{3}\right), 3.57(1 \mathrm{H}, \mathrm{dd}, J 9.5,7.0,23-\mathrm{H})$ and $3.95(1 \mathrm{H}, \mathrm{d}$, $J 4.7,22-\mathrm{H}) ; m / z$ (assignment, relative intensity) $471\left(\mathrm{M}^{+}+1\right.$, $8 \%), 455\left(\mathrm{M}^{+}-15,43\right), 399\left(\mathrm{M}^{+}-71,22\right), 171(42), 142(58)$ and 99 (100) (Found: $\mathrm{M}^{+}, 470.3785 . \mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}$. Calc. for $M$, 470.3761 ).

## ( $22 R, 23 R, 24 R$ )-22,23-Isopropylidenedioxy-24-methyl-5 $\alpha-$ cholest-2-en-6-one 4

A mixture of $3 \alpha, 5$-cyclo-22,23-acetonide $3(235 \mathrm{mg}, 0.5 \mathrm{mmol})$, pyridinium hydrochloride ( $10 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), anhydrous LiBr ( $2 \mathrm{mg}, 0.025 \mathrm{mmol}$ ) and $N, N$-dimethylacetamide ( $3 \mathrm{~cm}^{3}$ ) was heated at $160^{\circ} \mathrm{C}$ in an argon atmosphere for 2 h . The reaction mixture was poured onto crushed ice, the precipitate was dissolved in ethyl acetate, and the aqueous layer extracted with ethyl acetate. The combined organic extracts were washed with water, dried, concentrated and then purified by silica gel chromatography. Elution with hexane-ethyl acetate ( $8: 2, \mathrm{v} / \mathrm{v}$ ) afforded the title compound 4 ( $195 \mathrm{mg}, 83 \%$ ), mp $192-193{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}+23.1$ (c 2.81, $\mathrm{CHCl}_{3}$ ) (Found: C, 78.9; H, 10.5 . $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}$ requires C, $79.10 ; \mathrm{H}, 10.71 \%$ ); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{1}$ $1708(\mathrm{CO}) ; \lambda_{\max }(c 1.48, \mathrm{MeOH}) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 290$ (34); $\mathrm{CD}(\mathrm{MeOH}) \Delta \varepsilon_{293}-1.94 ; \delta_{\mathrm{H}} 0.67$ ( $3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}$ ), 0.71 ( 3 $\left.\mathrm{H}, \mathrm{d}, J 6.4,28-\mathrm{H}_{3}\right), 0.71\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.81(3 \mathrm{H}, \mathrm{d}, J 6.7,27-$ $\left.\mathrm{H}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J 7.0,26-\mathrm{H}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, J 6.1,21-\mathrm{H}_{3}\right), 1.35$ and $1.39\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropyl- $\left.\mathrm{CH}_{3}\right), 3.57(1 \mathrm{H}, \mathrm{dd}, J 7.0,6.8,23-\mathrm{H})$, $3.95(1 \mathrm{H}, \mathrm{d}, J 7.0,22-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and $5.68(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 470\left(\mathrm{M}^{+}, 3 \%\right), 455\left(\mathrm{M}^{+}-15,23\right), 399\left(\mathrm{M}^{+}-\right.$ $71,10), 370\left(\mathrm{M}^{+}-100,5\right), 355(10), 171$ (67), 142 (91) and 99 (100).
(22R,23R,24R)-22,23-Dihydroxy-24-methyl-5 $\alpha$-cholest-2-en-6one 5
A solution of $\Delta^{2}$-acetonide 4 ( $119 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) in methanol ( $7 \mathrm{~cm}^{3}$ ) was stirred with $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 5 \mathrm{~cm}^{3}\right)$ for 5 h at $50^{\circ} \mathrm{C}$. The solvent was removed and the crude product purified by silica gel chromatography. Elution with hexane-ethyl acetate ( $7: 3, \mathrm{v} / \mathrm{v}$ ) gave the title compound $5(93 \mathrm{mg}, 85 \%$ ), mp $136-138{ }^{\circ} \mathrm{C}$; $[x]_{\mathrm{D}}^{28}+8.8(c 2.27, \mathrm{MeOH})$ (Found: $\mathrm{C}, 77.9 ; \mathrm{H}$, 10.6. $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{3}$ requires C, $78.09 ; \mathrm{H}, 10.77 \%$ ); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $3350(\mathrm{OH}), 1708(\mathrm{CO})$ and $1650(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }}(c 1.48, \mathrm{MeOH}) / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{1} \mathrm{~cm}^{1}\right) 290(49) ; \mathrm{CD}(\mathrm{MeOH}) \Delta \varepsilon_{293}-2.77 ; \delta_{\mathrm{H}} 0.69$ ( $3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}$ ) $0.72\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J 7.0,28-\mathrm{H}_{3}\right)$, $0.87\left(3 \mathrm{H}, \mathrm{d}, J 6.7,27-\mathrm{H}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J 7.0,26-\mathrm{H}_{3}\right), 0.99(3 \mathrm{H}$, d, $\left.J 6.7,21-\mathrm{H}_{3}\right), 3.42(1 \mathrm{H}, \mathrm{dd}, J 5.2,5.2,23-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{m}$, $22-\mathrm{H})$ and $5.55(2 \mathrm{H}, \mathrm{m}, 2-$ and $3-\mathrm{H}) ; m / z 430\left(\mathrm{M}^{+}, 22 \%\right), 415$ $\left(\mathrm{M}^{+}-15,9\right)$ and $330\left(\mathrm{M}^{+}-100,100\right)$.
(22R,23R,24S)-22,23-Dihydroxy-24-methyl-5 $\alpha$-cholest-2-en-6one 7
The ( $24 S$ )-22,23-diacetoxy derivative $6^{9}(56 \mathrm{mg}, 0.11 \mathrm{mmol})$ was refluxed in methanol containing $5 \% \mathrm{KOH}$ for 1 h . The reaction mixture was neutralized with $6 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and extracted with ethyl acetate. The ethyl acetate extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated and then crystallized from acetone-hexane to give the 22,23 -diol $7(51 \mathrm{mg}, 94 \%$ ) mp $164^{\circ} \mathrm{C}$ (prisms); $R_{\mathrm{f}}$ (silica gel, $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5$ ) $0.61 ; \delta_{\mathrm{H}}$ 0.851 ( $3 \mathrm{H}, \mathrm{d}, J 6.8$ ), 0.917 ( $3 \mathrm{H}, \mathrm{d}, J 6.4$ ), 0.951 ( $3 \mathrm{H}, \mathrm{d}, J 6.8$ ), 0.971 ( $3 \mathrm{H}, \mathrm{d}, J 6.8$ ), 2.36 ( $1 \mathrm{H} \mathrm{dd}, J 13,4$ ), 3.56 ( $1 \mathrm{H}, \mathrm{dd}, J 8.8$, $1.4), 3.72$ ( $1 \mathrm{H}, \mathrm{dd}, J 8.8,1.7$ ), $5.57(1 \mathrm{H}, \mathrm{dm}, J 10.4)$ and 5.69 (1 H, dm, J 10.4); $m / z$ [as methyl boronate (DB-5 column)] 454 $\left(\mathrm{M}^{+}, 78 \%\right), 439$ (100), 436 (13), 426 (32) and 155 (15) (Found: $\mathrm{M}^{+}, 430.3438$. Calc. for $M, 430.3429$ ).

## (22R,23R,24R)-2 $\alpha, 3 \alpha$-Epoxy-22,23-dihydroxy-24-methyl-5 $\alpha-$ cholestan-6-one 9

A solution of $\Delta^{2}$-keto diol 5 ( $108 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) in dry benzene ( $8 \mathrm{~cm}^{3}$ ) and MCPBA ( 80 mg ) was stirred for 1 h at room temp. After dilution with aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}\left(5 \% ; 10 \mathrm{~cm}^{3}\right)$ to destroy the excess of peracid and extraction with ethyl acetate the obtained crude product was purified by silica gel chromatography. Elution with hexane-ethyl acetate ( $6: 4, \mathrm{v} / \mathrm{v}$ ) gave the title compound $9(85 \mathrm{mg}, 76 \%)$, mp $166-169^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ (silica gel $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5$ ) $0.39 ;[\alpha]_{\mathrm{D}}^{27}-13.8$ (c 1.45 , MeOH$)$ (Found: C. 75.2; H, 10.3. $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{4}$ requires C, $75.29 ; \mathrm{H}$, $10.38 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 1699(\mathrm{CO})$ and 800 (epoxide): $\lambda_{\text {max }}(c \quad 1.36, \mathrm{MeOH}) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 290$ (270): $\mathrm{CD}(\mathrm{MeOH}) \Delta \varepsilon_{292}-1.79 ; \delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.71$ ( 3 H. s, $19-\mathrm{H}_{3}$ ). $0.85\left(3 \mathrm{H}, \mathrm{d}, J 7.02,28-\mathrm{H}_{3}\right), 0.87(3 \mathrm{H}, \mathrm{d}, J 6.71,27-$ $\left.\mathrm{H}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J 7.02,26-\mathrm{H}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{d}, J 6.71,21-\mathrm{H}_{3}\right)$, $3.13(1 \mathrm{H}, \mathrm{dd}, J 5.7,4.2,2-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{t}, J 1.8,3-\mathrm{H}), 3.41(1 \mathrm{H}$, $\mathrm{m}, 23-\mathrm{H})$ and $3.70(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 446\left(\mathrm{M}^{+}, 9 \%\right), 431$ $\left(\mathrm{M}^{+}-15,2\right), 375\left(\mathrm{M}^{+}-71,8\right)$ and $346\left(\mathrm{M}^{+}-100,100\right)$ (Found: $\mathrm{M}^{-}, 446.3401$. Calc. for $M, 446.3396$ ).
(22R,23R,24S)-2 $\alpha, 3 \alpha$-Epoxy-22,23-dihydroxy-24-methyl-5 $\alpha-$ cholestan-6-one 10
Keto diol 7 ( $28 \mathrm{mg}, 0.065 \mathrm{mmol}$ ) was treated with MCPBA ( 12.7 $\mathrm{mg}, 0.074 \mathrm{mmol}$ ) in dichloromethane ( $4 \mathrm{~cm}^{3}$ ). After 15 h , additional peracid ( 4 mg ) was added to the mixture which was then allowed to stand for 2.5 h . The reaction mixture was diluted with chloroform, washed twice with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. NaOH , evaporated and crystallized from ethyl acetate-hexane to give the $2 \alpha, 3 \alpha$-epoxy derivative $10(19 \mathrm{mg}, 66 \%), \operatorname{mp~} 223^{\circ} \mathrm{C}$ (prisms): $R_{\mathrm{f}} 0.54 ; \delta_{\mathrm{H}} 0.676(3 \mathrm{H}, \mathrm{s}), 0.714(3 \mathrm{H}, \mathrm{s}), 0.846(3 \mathrm{H}, \mathrm{d}, J$ 6.8 ), 0.909 ( $3 \mathrm{H}, \mathrm{d}, J 6.4$ ), 0.948 ( $3 \mathrm{H}, \mathrm{d}, J 6.3$ ), 0.969 ( $3 \mathrm{H}, \mathrm{d}, J$ 6.8 ), 3.12 ( $1 \mathrm{H} . \mathrm{dd}, J 5.6,4.2$ ), 3.27 ( $1 \mathrm{H}, \mathrm{dm}, J 3.4$ ), 3.55 ( 1 H , ddd, $J$ 10.4. 5.2. 1.7: after addition of $\mathrm{D}_{2} \mathrm{O}, \mathrm{dd}, J 11.4,1.7$ ), 3.72 ( 1 H , ddd, $J 10.4,5.5,2.4$; after addition of $\mathrm{D}_{2} \mathrm{O}$, dd, $J 11.4,2.4$ );
$m / z$ [as methyl boronate (DB-5 column)] $470\left(\mathrm{M}^{+}, 81 \%\right), 454$ (41), 439 (42), 426 (14), 316 (17), 260 (9), 245 (32) and 155 (100) (Found: $\mathrm{M}^{+}, 446.3389$. Calc. for $M, 446.3382$ ).
( $22 R, 23 R, 24 R$ )-3 $\alpha$-Bromo-2 $\beta$-hydroxy-22,23-isopropylidene-dioxy-24-methyl-5 $\alpha$-cholestan-6-one 11
NBS ( $44 \mathrm{mg}, 0.24 \mathrm{mmol}$ ) was added to a solution of $\Delta^{2}$ acetonide 4 ( $51 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) in dimethoxyethane-water ( $6: 1$, $7 \mathrm{~cm}^{3}$ ). The mixture was stirred for 1 h at room temp. The reaction mixture was diluted with diethyl ether and then washed with $5 \%$ aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The ethereal layer was dried with $\mathrm{MgSO}_{4}$ and concentrated under reduced pressure to give the bromohydrin acetonide 11 ( $50 \mathrm{mg}, 86 \%$ ), mp 184 $186^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{28}+28.7(c 1.29, \mathrm{MeOH})$ (Found: C, 65.4; H, 8.9; $\mathrm{Br}, 13.8 . \mathrm{C}_{31} \mathrm{H}_{51} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 65.59 ; \mathrm{H}, 9.06 ; \mathrm{Br}, 14.08 \%$ ); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3433(\mathrm{OH})$ and $1706(\mathrm{CO}) ; \lambda_{\max }\left(\begin{array}{c}\text { c } \\ 1.29\end{array}\right.$, $\mathrm{MeOH}) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 290$ (100); CD (MeOH) $\Delta \varepsilon_{291}-1.95 ; \delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.71(3 \mathrm{H}, \mathrm{d}, J 7.02,28-$ $\left.\mathrm{H}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{d}, J 6.7,27-\mathrm{H}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J 7.02,26-\mathrm{H}_{3}\right), 0.97$ $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J 6.10,21-\mathrm{H}_{3}\right), 1.35$ and $1.39(3 \mathrm{H}$, s, isopropyl- $\mathrm{CH}_{3}$ ), $2.83(1 \mathrm{H}, \mathrm{dd}, J 11.9,2.8,5 \alpha-\mathrm{H}), 3.56(1 \mathrm{H}$, dd, $J 9.6,7.0,23-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{d}, J 6.7,22-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{d}, J$ $0.9,2-\mathrm{H})$ and $4.38(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; m / z 553\left(\mathrm{M}^{+}-15,14 \%\right), 495$ $\left(\mathrm{M}^{+}-73,7\right), 471(11), 451(8), 171(94)$ and 142 (100).
(22R,23R,24R)-3 $\alpha$-Bromo-2 $\beta, 22,23$-trihydroxy-24-methyl-5 $\alpha$ -cholestan-6-one 12
The bromohydrin acetonide $11(40 \mathrm{mg}, 0.07 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ was stirred with $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 8 \mathrm{~cm}^{3}\right)$ for 4 h at $50^{\circ} \mathrm{C}$. After removal of methanol under reduced pressure the residue was diluted with ethyl acetate, the organic layer washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure to give the bromohydrin $12(30 \mathrm{mg}, 81 \%), \mathrm{mp}$, $197-199^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{28}+21.3$ (c 1.27 , MeOH ) (Found: C, $63.5 ; \mathrm{H}$, 8.8; Br , 14.9. $\mathrm{C}_{28} \mathrm{H}_{4}{ }_{7} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 63.74 ; \mathrm{H}, 8.98 ; \mathrm{Br}$, $15.15 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3397(\mathrm{OH})$ and $1694(\mathrm{CO}) ; \lambda_{\max }(c 1.27$, $\mathrm{MeOH}) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 290(65) ; \mathrm{CD}(\mathrm{MeOH}) \Delta \varepsilon_{292}$ $-2.11 ; \delta_{\mathrm{H}} 0.68\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J 7.02,28-\mathrm{H}_{3}\right)$, $0.86\left(3 \mathrm{H}, \mathrm{d}, J 6.71,27-\mathrm{H}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J 6.71,26-\mathrm{H}_{3}\right), 0.97$ ( $3 \mathrm{H}, \mathrm{d}, J 6.71,21-\mathrm{H}_{3}$ ), $0.97\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 3.38(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{H})$, $3.67(1 \mathrm{H}, \mathrm{dd}, J 5.9,1.4,22-\mathrm{H}), 4.17(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $4.39(1 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{H}) ; m / z 529 / 527\left(\mathrm{M}^{+}+1,1 \%\right), 510 / 508\left(\mathrm{M}^{+}-18,1\right)$ and 428/426 ( $\mathrm{M}^{+}-100,100$ ).

## (22R,23R,24R)-2 $\beta, 3 \beta$-Epoxy-22,23-dihydroxy-24-methyl- $5 \alpha-$ cholestan-6-one 15

To a solution of bromohydrin $12(26 \mathrm{mg}, 0.05 \mathrm{mmol})$ in methanol ( $5 \mathrm{~cm}^{3}$ ) was added at room temp. sodium methoxide ( $2.3 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ in methanol $\left(1 \mathrm{~cm}^{3}\right)$. After 10 min , the mixture was diluted with water ( $5 \mathrm{~cm}^{3}$ ) and then the methanol was removed under reduced pressure. The aqueous phase was extracted with ethyl acetate, worked up and crystallized to give the $2 \beta, 3 \beta$-epoxy diol 15 ( $19 \mathrm{mg}, 87 \%$ ), mp 176-179 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.57 ;[\alpha]_{\mathrm{D}}^{26}+9.30(c 2.15$, MeOH ) (Found: C, $75.1 ; \mathrm{H}, 10.1 . \mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{4}$ requires C, 75.29 ; $\mathrm{H}, 10.38 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3515(\mathrm{OH})$ and $1708(\mathrm{CO}) ; \lambda_{\text {max }}(c$ 1.07 , MeOH$) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 288(95) ; \mathrm{CD}(\mathrm{MeOH})$ $\Delta \varepsilon_{292}-2.64 ; \delta_{\mathrm{H}} 0.66\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.85$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.02,28-\mathrm{H}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J 6.72,27-\mathrm{H}_{3}\right), 0.92(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.71,26-\mathrm{H}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{d}, J 6.71,21-\mathrm{H}_{3}\right), 3.16(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.24(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.41(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{H})$ and $3.70(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H})$; $m / z 446\left(\mathrm{M}^{+}, 5 \%\right), 375\left(\mathrm{M}^{+}-71,4\right), 357(375-18,3)$ and $346\left(\mathrm{M}^{+}-100,100\right)$ (Found: $\mathrm{M}^{+}, 446.3385$. Calc. for $M$, 446.3396).

## ( $22 R, 23 R, 24 S$ )-2 $\beta, 3 \beta$-Epoxy-22,23-dihydroxy-24-methyl- $5 \alpha-$ cholestan-6-one 16 (secasterone)

The known ( $22 R, 23 R, 24 S$ )-22,23-isopropylidenedioxy derivative $8^{10}(18 \mathrm{mg})$ in dimethoxyethane $\left(4 \mathrm{~cm}^{3}\right)$ and water $(0.6$
$\mathrm{cm}^{3}$ ) was treated with NBS ( 50 mg , freshly recrystallized from hot water, ca. $90^{\circ} \mathrm{C}$ ) at room temp. for 3 h . The reaction mixture was diluted with diethyl ether, washed with $5 \%$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and then brine, dried over $\mathrm{MgSO}_{4}$, filtered and then concentrated under reduced pressure below $30^{\circ} \mathrm{C}$ to give crude product 13. This was dissolved in methanol $\left(5 \mathrm{~cm}^{3}\right)$ and tetrahydrofuran $\left(1 \mathrm{~cm}^{3}\right)$ and the solution was treated with $\mathrm{HCl}\left(1.2 \mathrm{~mol} \mathrm{dm}^{-3} ; 1 \mathrm{~cm}^{3}\right)$ at $50^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was diluted with chloroform, washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{MgSO}_{4}$, filtered and then concentrated to give crude product 14, which was dissolved in methanol $\left(4 \mathrm{~cm}^{3}\right)$ and tetrahydrofuran $\left(1 \mathrm{~cm}^{3}\right)$. This solution was treated with $28 \%$ sodium methoxide ( $0,2 \mathrm{~cm}^{3}$ at room temp. for 30 min . The reaction mixture was diluted with chloroform, washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{MgSO}_{4}$, filtered and then concentrated to give a crude product, which was purified by silica gel chromatography. Elution with benzene-ethyl acetate ( $2: 1, \mathrm{v} / \mathrm{v}$ ) gave the title compound 16 (secasterone, 8 mg ), mp $179-180^{\circ} \mathrm{C}$ (ethyl acetate-hexane) $R_{\mathrm{f}}$ (benzene-ethyl acetate, $1: 1, \mathrm{v} / \mathrm{v}) 0.34 ; \delta_{\mathrm{H}} 0.675(3 \mathrm{H}, \mathrm{s}), 0.806$ ( $3 \mathrm{H}, \mathrm{s}$ ), $0.846(3 \mathrm{H}, \mathrm{d}, J 6.8), 0.912(3 \mathrm{H}, \mathrm{d}, J 6.4), 0.951(3 \mathrm{H}, \mathrm{d}$, $J 7.3), 0.969(3 \mathrm{H}, \mathrm{d}, J 7.3), 2.32(1 \mathrm{H}, \mathrm{dd}, J 13.2,3.9), 3.16(1 \mathrm{H}$, $\mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{dd}, J 5.9,3.8), 3.56(1 \mathrm{H}, \mathrm{d}, J 7.7)$ and $3.72(1 \mathrm{H}, \mathrm{d}$, $J 7.7$ ); $m / z$ [as methyl boronate (DB-5 column)] $470\left(\mathrm{M}^{+}\right.$, $66 \%$ ), 454 (70), 439 (76), 426 (25), 316 (23), 286 (10), 260 (12), 245 (19) and 155 (100) (Found: $\mathbf{M}^{+}, 446.3397$. Calc. for $M$, 446.3396).

## (22E,24R)-3 $\beta$-Hydroxy-24-methyl-5 $\alpha$-cholest-22-en-6-one 17

The title compound was prepared in $60 \%$ yield starting from 1 according to the literature procedure, ${ }^{11} \mathrm{mp}, 186-187^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}$ $-35.4(c 0.363, \mathrm{MeOH}) ; v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3430(\mathrm{OH})$ and 1705 $(\mathrm{CO}) ; \lambda_{\text {max }}(\mathrm{c} \quad 1.13, \mathrm{MeOH}) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{1} \mathrm{~cm}^{1}\right) 289$ (70); $\mathrm{CD}\left(\mathrm{CHCl}_{3}\right) \Delta \varepsilon_{293}-2.04 ; \delta_{\mathrm{H}} 0.677\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.757(3 \mathrm{H}$, s, $\left.19-\mathrm{H}_{3}\right), 0.817\left(3 \mathrm{H}, \mathrm{d}, J 6.71,28-\mathrm{H}_{3}\right), 0.833(3 \mathrm{H}, \mathrm{d}, J 7.02$, $\left.27-\mathrm{H}_{3}\right), 0.908\left(3 \mathrm{H}, \mathrm{d}, J 7.02,26-\mathrm{H}_{3}\right), 1.011(3 \mathrm{H}, \mathrm{d}, J 6.71,21-$ $\mathrm{H}_{3}$ ), 3.577 ( 1 H , septet, $3-\mathrm{H}$ ), 5.141 ( $1 \mathrm{H}, \mathrm{dd}, J 15.6,8.0,23-\mathrm{H}$ ) and $5.211(1 \mathrm{H}, \mathrm{dd}, J 13.3,7.6,22-\mathrm{H}) ; m / z 414\left(\mathrm{M}^{+}, 100 \%\right), 399$ $\left(\mathrm{M}^{+}-15,12\right)$ and $371(399-28,17)$.

## (22E,24R)-24-Methyl-5 $\alpha$-cholest-22-ene-3,6-dione 18

To a stirred solution of $3 \beta$-hydroxy ketone $17(1.37 \mathrm{~g}, 3.3 \mathrm{mmol})$ in acetone ( $100 \mathrm{~cm}^{3}$ at $0^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{CrO}_{3}(1.34 \mathrm{~g})$ in acetone ( $10 \mathrm{~cm}^{3}$ ) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(0.1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. After removal of the acetone the product was extracted with ethyl acetate, the organic layer washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated to give a residue which was purified by silica gel chromatography. Elution with hexane-ethyl acetate ( $8: 2, \mathrm{v} / \mathrm{v}$ ) afforded the diketone 18 ( $797 \mathrm{mg}, 59 \%$ ) , mp 195$198{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-36.8$ (c 1.52, MeOH) (Found: C, 81.3; H, 10.6. $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.50 ; \mathrm{H}, 10.75 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1702(\mathrm{CO}) ; \lambda_{\text {max }}(c 1.14, \mathrm{MeOH} / \mathrm{nm})\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 290(80)$; $\mathrm{CD}\left(\mathrm{CHCl}_{3}\right) \Delta \varepsilon_{291}-2.95 ; \delta_{\mathrm{H}} 0.70\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.82(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.7,28-\mathrm{H}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{d}, J 6.7,27-\mathrm{H}_{3}\right), 0.91(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\left.26-\mathrm{H}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, J 6.4,21-\mathrm{H}_{3}\right), 5.15$ $(1 \mathrm{H}, \mathrm{dd}, J 15.3,7.9,23-\mathrm{H})$ and $5.22(1 \mathrm{H}, \mathrm{dd}, J 15.3,7.3$, $22-\mathrm{H}) ; m / z 412\left(\mathrm{M}^{+}, 83 \%\right), 397\left(\mathrm{M}^{+}-15,11\right), 369\left(\mathrm{M}^{+}-43\right.$, 48) and $314\left(\mathrm{M}^{+}-98,100\right)$.
(22R,23R,24R)-22,23-Dihydroxy-24-methyl-5a-cholestane-3,6dione 19 (3-dehydro-24-epi-teasterone)
Catalytic asymmetric dihydroxylation of diketo olefin 18 (100 $\mathrm{mg}, 0.24 \mathrm{mmol}$ ) as described for 2 gave upon silica gel chromatography and elution with hexane-ethyl acetate ( $2: 8$, $\mathrm{v} / \mathrm{v}$ ) the title compound $19(56 \mathrm{mg}, 52 \%), \mathrm{mp} 191-194{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ $0.81 ;[\alpha]_{\mathrm{D}}^{27}-19.1$ (c 1.62, MeOH) (Found: C, 75.1; H, 10.2. $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 75.29 ; \mathrm{H}, 10.38 \%\right) ; \lambda_{\text {max }}(c \quad 1.62$, $\mathrm{MeOH}) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 287(500)$; $\mathrm{CD}(\mathrm{MeOH}) \Delta \varepsilon_{294}$ $-3.51 ; \delta_{\mathrm{H}} 0.71\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J 7.0,28-\mathrm{H}_{3}\right), 0.88$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.0,27-\mathrm{H}_{3}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.7,26-\mathrm{H}_{3}\right), 0.96(3 \mathrm{H}, \mathrm{s}, 19-$ $\left.\mathrm{H}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J 6.4,21-\mathrm{H}_{3}\right), 3.42(1 \mathrm{H}, \mathrm{dd}, J 5.5,4.8,23-\mathrm{H})$ and $3.70(1 \mathrm{H}, \mathrm{d}, J 4.8,22-\mathrm{H}) ; m / z 446\left(\mathrm{M}^{+}, 1 \%\right), 375\left(\mathrm{M}^{+}-\right.$ $71,4), 357(375-18,3)$ and $346\left(\mathrm{M}^{+}-100,100\right)$.

## Acknowledgements

We thank Dr U. Himmelreich, Dr J. Schmidt and Dr M. Nakayama for mass and NMR spectra. S. T. and T. Y. thank Dr M. Aburatani for the gift of $(22 R, 23 R, 24 S)$-22,23-diacet-oxy-24-methyl-5 5 -cholest-2-en-6-one. Financial support from the Deutsche Forschungsgemeinschaft, Germany, is gratefully acknowledged. This work was also supported by a Grant-inAid for Cooperative Research from the Ministry of Education, Science and Cultures of Japan.

## References

1 Brassinosteroids-Chemistry, Bioactivity and Applications, eds. H. G. Cutler, T. Yokota and G. Adam, ACS Symposium Series 474, American Chemical Society, Washington DC, 1991.
2 V. Marguardt and G. Adam, Chemistry of Plant Protection, ed. W. Ebing, Springer Verlag, Heidelberg, 1991, vol. 7, p. 103.

3 J. Schmidt, B. Spengler, T. Yokota, M. Nakayama, S. Takatsuto, B. Voigt and G. Adam, Phytochemistry, 1995, 38, 1095.

4 H. Suzuki, T. Inoue, S. Fujioka, S. Takatsuto, T. Yanagisawa, T. Yokota, N. Murofushi and A. Sakurai, Biosci. Biotech. Biochem., 1994, 58, 1186.
5 H. Abe, C. Honjo, Y. Kyokawa, S. Asakawa, M. Natsume and M. Narushima, Biosci. Biotech. Biochem., 1994, 58, 986.

6 T. Yokota, M. Nakayama, T. Wakisaka, J. Schmidt and G. Adam, Biosci. Biotech. Biochem., 1994, 58, 1183.
7 T. C. McMorris and P. A. Patil, J. Org. Chem., 1993, 58, 2338.
8 L.-F. Huang, W.-S. Zhou, L.-Q. Sun and X.-F. Pan, J. Chem. Soc., Perkin Trans. 1, 1993, 1683.
9 M. Aburatani, T. Takeuchi and K. Mori, Agric. Biol. Chem., 1987, 51, 1909.
10 S . Takatsuto, N. Yazawa, M. Ishiguro, M. Morisaki and N. Ikekawa, J. Chem. Soc., Perkin Trans. I, 1984, 139

11 M. J. Thompson, N. Mandava, J. L. Flippen-Anderson, J. F. Worley, S. R. Dutky, W. E. Robbins and W. Lusby, J. Org. Chem., 1979. 44, 5002.

12 M. Arima, T. Yokota and N. Takahashi, Phytochemistry, 1984, 23, 1587.

13 T. Yokota and K. Mori, Molecular Structure of Biologically Active Steroids, eds. M. Bohl and W. L. Duax, C. R. C., Boca Raton, Florida, 1992, p. 317

Paper 5/011151
Received 23rd February 1995
Accepted 24th February 1995

